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LETTER TO THE EDITOR 

Solvability in quantum mechanics and classically superfluous 
invariants 

Jarmo Hietarinta 
Department of Physical Sciences, University of Turku, 20500 Turku, Finland 

Received 1 October 1988 

Abstract. We show that in quantum mechanics there can be more commuting constants 
of motion than the dimension suggests. There will be an algebraic relationship between 
the invariants, but when this relationship is non-trivial i t  can be used to reduce the 
Schrodinger equation to quadratures. The Lame equation and some of its generalisations 
fall into the class of potentials for which this method works. 

The usual definition of (Liouville) integrability of an N-dimensional Hamiltonian 
system requires the existence of N constants of motion (the Hamiltonian being one 
of them) in involution. This definition is algebraic and  extends naturally to quantum 
mechanics; there we just work with operators that should commute (Hietarinta 1984). 

In classical mechanics Liouville integrability means that the system can in principle 
be solved in quadratures (Arnold 1980); however, in practice this is not so straightfor- 
ward. The situation is even worse in quantum mechanics. According to the above 
definition all one-dimensional systems are trivially integrable since the Hamiltonian 
itself is sufficient for the one required constant of motion. In classical mechanics a 
solution in quadratures can indeed be easily written down. However, in quantum 
mechanics the one-dimensional Schrodinger equation is usually far from solvable. 

In this letter we introduce an  extension of integrability which is related to solvability. 
By solvability we mean that the Schrodinger equation should be solvable by quadratures. 
The idea is essentially to construct more than N constants of motion. This concept 
works only in quantum mechanics due to the non-commuting nature of its variables 
and is trivial in classical mechanics. ( In  more mathematical terms, we use the fact 
that the operators in quantum mechanics d o  not factorise uniquely.) Of course, when 
there are more than N integrals of motion they cannot all be functionally independent, 
but in quantum mechanics such extra constants can nevertheless be used to integrate 
the Schrodinger equation. 

Let us consider the one-dimensional Hamiltonian 

We want to find an operator I which commutes with H. Since the highest derivative 
in H has a constant coefficient this property must hold also for I .  We can always 
subtract powers of H from I ,  therefore Z must start like ay". Thus the simplest 
self-adjoint operator that can produce something useful is 

z3 = -ih3a:+ifh(a,C(x)+ C(x)a,). ( 2 )  
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The condition [ H ,  Z3] = 0 gives the following equations for C and V: 

C’ - 3 V’ = 0 

h * ( C“‘ - 4 V‘”) + 4 CV‘ = 0. 

h 2 V’” + 4( 3 v + c, ) V’ = 0. 

v =  h’P(x)  - c, 

From ( 3 a )  we get C = 3 V +  c 1 ,  and when this is substituted into (3b) we get 

This can be  easily integrated twice, and if we introduce the function 9 by 

c = 3 h 2 9 ( x 1  

the twice-integrated form of (4) becomes one of the defining equations for Weierstrass’ 
9 function (Abramowitz and  Stegun 1972): 

9’(x)2=49J(x)3-g29(x)-g3. (6) 

Note the factor h2  in the potential, which again shows the purely quantum mechanical 
nature of this result. The two parameters gi together with c1 and translation in x, 
amount to four free constants, which is what we should have according to (3). The 
constant c1 can be absorbed into the energy so we will ignore it from now on. 

Thus if V =  h 2 9 ( x )  there exists an  operator, third order in a,, which commutes 
with the Hamiltonian. What can we d o  with this information? Since we have two 
commuting operators they have simultaneous eigenfunctions 

(-ih*d;+ V(X))?(X)= EW(x)  (7) 

[-ih3d2+iih(aXC(x) + C(x)a,)]W(x) = KW(x)  (8) 

where E and  K are the respective eigenvalues. Equation (8) can now be reduced to 
a linear equation in 8,: if we solve a f W  from (7) and  substitute into (8), we obtain 

vi 91- 2 i v 3  K _-  
W - 2 ( 9 + 2 h - ’ E ) ’  (9) 

Before integrating (9) let us see if it is compatible with (7)-note that (7) contains 
only E while both E and K appear in (9). In fact when (7) is calculated using (9) 
for 9‘ we get the following condition between the parameters: 

- 4 P K  = -32 h-‘E + 2h-* Eg, - g3. (10) 

The relationship (10) allows a natural parametrisation of E and K. For a given E 
define a by 

E = - ; h 2 9 ( a ) .  (1 la )  

K = i i $ h 3 9 ‘ ( a )  ( 1 l b )  

Then by virtue of (10) and (6) 

and (9) takes the particularly nice form 

W”(x) P ( X )  * 9 ’ ( a )  
W(x) - 2 ( 9 ( x )  - P ( a ) ) ’  
-- 

\I’ can now be integrated and  the result expressed in terms of Weierstrass’ 9, CT and 
5 functions (Whittaker and  Watson 1927). However, that solution involves additional 
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transcendental functions, so we prefer to write the solution in quadratures, as promised 
before. Using (12) and (6) we find 

~ ( x )  = ( P ( x ) -  P ( ( Y ) ) ” ~  exp +P’((Y) 

The h2  depecdence would enter if we wrote this in terms of V instead of 9’. Here 
energy dependence enters implicitly through (Y given by (1 1). The result (13) is formal 
and in applications one should check whether P’ (a )  is real (bounded states) or pure 
imaginary (oscillatory states) and, in the former case, whether the state in normalisable. 
These questions will not be discussed here. 

‘The above steps can be carried through for higher-order invariants as well. As a 
result one obtains higher-order equations for the potential V(x). To simplify the 
notation let d =a,, and let us also define E and U by 

(4t3-g,t-g3)-1’2dt . (13) ) ( I p ( x J  

E = ;h2s V(x) =$h2v(x) .  (14) 

Is = id5-i;(d3B(x) + B(x)d3) +i;(dD(x)+ D(x)d) .  (15) 

A fifth-order generalisation of the third-order result would start with 

The condition [ H ,  I,] = 0 yields the equations 

B’-Z ,U ’ -  -0  

B(’) + 3 B”v’ + 3 B’ U” - D”’ - 2 ~ ‘ ~  + 2v”’B - 2 v’D = 0. 

9 B”‘ - 4 0 ’  - 2 0 ~ ” ’  + 6v’B  = 0 
(16) 

The first two equations yield B and D in terms of v 

B = $ v  D = i( U”+ 3v2) + do (17) 

U(’) - 10~)”’~1- 2021”~1’+ 3 0 ~ ’ ~ ~  + 16v’do = 0. (18) 

and then what remains is a fifth-order equation for U: 

At this point we should note that this is a more general result than that obtained from 
taking I s  = HI,  + Z3H, which only yields a particular solution. 

In the above derivation of (18) we used the condition [ H, I ]  = 0. As an alternative 
let us instead use the fact that H and I ,  must have simultaneous eigenfunctions. From 
HW = E W  we get for the second derivative VI‘= ( v  - E ) W  and then from I,? = KW we 
obtain (assuming (17)) the following expression for W/9: 

W’ U’’’ - 6v’v - 4ve + i 16K 
9 - 2( U”- 3 u2 - ~ V E  - 8s2  - 8do) ’ 

When this is substituted back into 9’’ = ( v  - E)W to check compatibility, we get a 
lengthy expression, which is, in particular, polynomial in E and K .  Anticipating the 
analogue of (10) we may expand 

- K 2 =   SE'+ k4s5+ k 4 ~ ~ +  k 3 ~ , +  kzE2+ klE + ko. (20) 

Now since U ,  B and D do not depend on E the coefficients of various powers of E 

must be constants. In this way we obtain from the coefficients of descending powers 
of E first that k s = - l ,  k4=0,  k3= - 2 4  (assuming the results (17)). From E’ we get 
the once-integrated form of (18) 

(21) U‘’” - 1 0 ~ ” ~  - 5 d2 + 10v3 + 16udo - 16 k, = 0. 
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The surprising fact is that (21) can be integrated further by the remaining coefficients 
of E. If (21) is implemented, then we get 

w 3 -  = 2v“’v’ - - ~ O U ” U + ~ U ~ +  16dov2-32k2v +64(kl + d i )  =O. (22) 

It is easy to see that (21) is a differential consequence of (22), and what is interesting 
is that this twice-integrated form of (18) came for free. The trick works one step 
further: if we implement (22) then the &-independent part yields (k,, = k, + di) 

W2= ~ ” ~ - 2 O v ’ ~ ~ u ~ ~ u  - 10u”2u4-32v’12v2do+64v’12uk2 - 1 2 8 ~ “ ~ k , ~ + 8 v ” u ~  

+ ~ O V ” V ’ ~ V ~ +  1 2 8 v ” ~ ’ ~ v d ~ -  128v”u’2k2-20u’4u2-64u’4do-76v’2v5 

- 192 U’* U do + 256 v l 2  u2 k2 + 256 ut2 uk1o - 1024vt2 ko + 1 0 2 4 ~ ’ ~  k, do 

+ 25 U *  + 1 60v6 - 320v5k2 + 6 4 0 ~ ~  klo + 246u4d i - 1 0 2 4 ~ ~  k2do 

+ 1024U2(2k10do+ k:) - 4 0 9 6 ~ k , ~ k ~ + 4 0 9 6 k ~ ~ = O .  (23) 

However, this is nor equivalent to (22). If we divide (23) by U” (to make ko a bare 
constant) and differentiate it we get 

(24) ( W2/ U”)‘ = W3 F. 

The problem is that the integrating factor F above can vanish for non-trivial functions 
U that are not solutions of (22). This means that although (23) contains lower-degree 
derivatives of U ,  and is in that sense better than (22), it also allows spurious solutions, 
and in that sense the result (23) is not satisfactory. For the fifth-order case our final 
equation for v is therefore (22). 

It is easy to check that the above equation (22) for U allows the solutions U = 29’ 
and  69’, but since (22) contains more constants it also allows other solutions. We may 
consider (22) as defining a generalisation of the Weierstrass 9’ function. 

The method above can be extended to still higher-order I and will lead to still 
more general equations for the potential U. For Vr’/Vr we will obtain equations of the 
form 

where K ( E )  is given by a generalisation of (20). The potential U can always be 
integrated a few times by the requirement of compatibility with Vr” = ( U  - E ) Y ,  which 
leads to 

(26) 

The above examples showed that this equation has solutions where J is linear or  
quadratic in E and K 2  is third or fifth order, respectively. It is reasonable to assume 
that (26) also has higher-order solutions. For example if I is an operator that commutes 
with H then so does ZH+HI,  and this last one will generate a higher-order J. In 
general if J is of degree n then K 2  should be of order 2 n +  1. Note that it is K 2  that 
is polynomial in E, not K. 

Higher-order polynomial solutions provide us with more general potentials for 
which this procedure works. Lower-order results suggest that this will give us at least 
the Lam6 equations with v = n (  n + 1)9 (x ) .  But since the defining equation for U will 
be of higher and higher order, we will also get a genuinely wider class of potentials. 

2 J”J  - J”- K2-4J2 (v  - E )  =O. 
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We have considered one-dimensional Hamiltonians that have a commuting operator 
which is odd  in momenta. In this way we have obtained a class of potentials for which 
9' /V is a rational function of E ,  U and its derivatives. This allows us to express 9 in 
quadratures in terms of U, U ' ,  . . . which may be considered as known. Probably this 
method can be extended to other kinds of systems. 
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the Academy of Finland. 
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